The interplay between diet and the gut microbiome: implications for health and disease – Nature Reviews Microbiology

  • Walker, A. W. & Hoyles, L. Human microbiome myths and misconceptions. Nat. Microbiol. 8, 1392–1396 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lundgren, S. N. et al. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome 6, 109 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15, 73 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020). This paper demonstrates that a 1-year Mediterranean dietary intervention in elderly individuals can positively alter the gut microbiota, leading to improved markers of lower frailty, cognitive function and reduced inflammation.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bourdeau-Julien, I. et al. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome 11, 26 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zampieri, G., Vijayakumar, S., Yaneske, E. & Angione, C. Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput. Biol. 15, e1007084 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valls-Pedret, C. et al. Mediterranean diet and age-related cognitive decline. JAMA Intern. Med. 175, 1094 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Sánchez-Villegas, A. et al. Mediterranean dietary pattern and depression: the PREDIMED randomized trial. BMC Med. 11, 208 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Gonzalez, M. A. & Martin-Calvo, N. Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Curr. Opin. Clin. Nutr. Metab. Care 19, 401–407 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, A. J. et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25, 789–802.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kopp, W. How Western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. 12, 2221–2236 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The healthy microbiome — what is the definition of a healthy gut microbiome? Gastroenterology 160, 483–494 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Abdelsalam, N. A., Hegazy, S. M. & Aziz, R. K. The curious case of Prevotella copri. Gut Microbes 15, 2249152 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pasolli, E. et al. Accessible, curated metagenomic data through experimentHub. Nat. Methods 14, 1023–1024 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Filippis, F. et al. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets. Cell Host Microbe 25, 444–453.e3 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Hippe, B. et al. Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Benef. Microbes 7, 511–517 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Armet, A. M. et al. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe 30, 764–785 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • KEYS, A. et al. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 124, 903–915 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muralidharan, J. et al. Effect on gut microbiota of a 1-y lifestyle intervention with Mediterranean diet compared with energy-reduced Mediterranean diet and physical activity promotion: PREDIMED-plus study. Am. J. Clin. Nutr. 114, 1148–1158 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gómez-Pérez, A. M. et al. Gut microbiota in nonalcoholic fatty liver disease: a PREDIMED-Plus trial sub analysis. Gut Microbes 15, 2223339 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rinott, E. et al. The effects of the green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Med. 14, 29 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waddell, I. S. & Orfila, C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: from epidemiological evidence to potential molecular mechanisms. Crit. Rev. Food Sci. Nutr. 63, 8752–8767 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Oliver, A. et al. High-fiber, whole-food dietary intervention alters the human gut microbiome but not fecal short-chain fatty acids. mSystems 6, e00115–e00121 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coker, J. K., Moyne, O., Rodionov, D. A. & Zengler, K. Carbohydrates great and small, from dietary fiber to sialic acids: how glycans influence the gut microbiome and affect human health. Gut Microbes https://doi.org/10.1080/19490976.2020.1869502 (2021).

  • Benítez-Páez, A. et al. A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in overweight humans. mSystems 4, e00209–e00219 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costabile, A. et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br. J. Nutr. 99, 110–120 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front. Microbiol. 7, 129 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deehan, E. C. et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27, 389–404.e6 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article 

    Google Scholar 

  • Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siddiqui, M. T. & Cresci, G. A. The immunomodulatory functions of butyrate. J. Inflamm. Res. 14, 6025–6041 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29, 700–712 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Roager, H. M. et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68, 83–93 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Procházková, N. et al. Advancing human gut microbiota research by considering gut transit time. Gut 72, 180–191 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trefflich, I. et al. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Crit. Rev. Food Sci. Nutr. 60, 2990–3004 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Losno, E. A., Sieferle, K., Perez-Cueto, F. J. A. & Ritz, C. Vegan diet and the gut microbiota composition in healthy adults. Nutrients 13, 2402 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, Z. et al. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med. 20, 204 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H. et al. Interactions between gut microbiota and polyphenols: a mechanistic and metabolomic review. Phytomedicine 119, 154979 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corrêa, T. A. F., Rogero, M. M., Hassimotto, N. M. A. & Lajolo, F. M. The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Front Nutr. 6, 188 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, F. C. et al. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutr. Neurosci. https://doi.org/10.1080/1028415X.2023.2298098 (2024).

  • Selinger, E. et al. Evidence of a vegan diet for health benefits and risks — an umbrella review of meta-analyses of observational and clinical studies. Crit. Rev. Food Sci. Nutr. 63, 9926–9936 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Espín, J. C., González-Sarrías, A. & Tomás-Barberán, F. A. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 139, 82–93 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sesso, H. D. et al. Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: the COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am. J. Clin. Nutr. 115, 1490–1500 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stapleton, P. D., Shah, S., Ehlert, K., Hara, Y. & Taylor, P. W. The β-lactam-resistance modifier (−)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiology 153, 2093–2103 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chan, C.-L., Gan, R.-Y., Shah, N. P. & Corke, H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control 92, 437–443 (2018).

    Article 
    CAS 

    Google Scholar 

  • Santos, C. A., Lima, E. M. F., de Melo Franco, B. D. G. & Pinto, U. M. Exploring phenolic compounds as quorum sensing inhibitors in foodborne bacteria. Front. Microbiol. 12, 735931 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plamada, D. & Vodnar, D. C. Polyphenols — gut microbiota interrelationship: a transition to a new generation of prebiotics. Nutrients 14, 137 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cortés‐Martín, A., Selma, M. V., Tomás‐Barberán, F. A., González‐Sarrías, A. & Espín, J. C. Where to look into the puzzle of polyphenols and health? The postbiotics and gut microbiota associated with human metabotypes. Mol. Nutr. Food Res. 64, 1900952 (2020).

    Article 

    Google Scholar 

  • Prochazkova, M. et al. Vegan diet is associated with favorable effects on the metabolic performance of intestinal microbiota: a cross-sectional multi-omics study. Front. Nutr. 8, 783302 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dingeo, G. et al. Phytochemicals as modifiers of gut microbial communities. Food Funct. 11, 8444–8471 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davila, A.-M. et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res. 68, 95–107 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, N., Tian, Y., Wu, Y. & Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci. 18, 795–808 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neis, E., Dejong, C. & Rensen, S. The role of microbial amino acid metabolism in host metabolism. Nutrients 7, 2930–2946 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barreto, F. C. et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 4, 1551–1558 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yue, T. et al. Hydrogen sulfide creates a favorable immune microenvironment for colon cancer. Cancer Res. 83, 595–612 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ang, Q. Y. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181, 1263–1275.e16 (2020). This paper shows that a ketogenic diet changes the gut microbiota by depleting bifidobacteria and inhibiting their growth through ketone bodies, leading to a reduction in pro-inflammatory TH17 cells and emphasizing the importance of chemical communication in mediating host responses to dietary interventions.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, H. et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct. Target. Ther. 7, 11 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bisanz, J. E., Upadhyay, V., Turnbaugh, J. A., Ly, K. & Turnbaugh, P. J. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe 26, 265–272.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindefeldt, M. et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 5, 5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173, 1728–1741.e13 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, C. et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct. Target. Ther. 6, 154 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, D. et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. 8, 6670 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frioux, C. et al. Enterosignatures define common bacterial guilds in the human gut microbiome. Cell Host Microbe 31, 1111–1125.e6 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015). This paper compares the gut microbiota of Papua New Guineans and US residents, indicating that variations in microbial diversity and abundance may result from modern lifestyle factors in industrialized societies, limiting bacterial diversity with implications for human health.

    Article 
    PubMed 

    Google Scholar 

  • Sun, S. et al. Does geographical variation confound the relationship between host factors and the human gut microbiota: a population-based study in China. BMJ Open 10, e038163 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. 107, 14691–14696 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Filippo, C. et al. Diet, environments, and gut microbiota. a preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front. Microbiol. 8, 1979 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, X., Qiao, K., Wu, H. & Zhang, Y. The impact of food additives on the abundance and composition of gut microbiota. Molecules 28, 631 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • del Pozo, S. et al. Potential effects of sucralose and saccharin on gut microbiota: a review. Nutrients 14, 1682 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolfson, S. J. et al. Bacterial hydrogen sulfide drives cryptic redox chemistry in gut microbial communities. Nat. Metab. 4, 1260–1270 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naimi, S., Viennois, E., Gewirtz, A. T. & Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filippou, C. D. et al. Dietary approaches to stop hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: a systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 11, 1150–1160 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dwiyanto, J. et al. Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. Sci. Rep. 11, 2618 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rampelli, S. et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr. Biol. 25, 1682–1693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gomez, A. et al. Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep. 14, 2142–2153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mancabelli, L. et al. Meta‐analysis of the human gut microbiome from urbanized and pre‐agricultural populations. Env. Microbiol. 19, 1379–1390 (2017).

    Article 

    Google Scholar 

  • Ecklu-Mensah, G. et al. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-Microbiome study. Nat. Commun. 14, 5160 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jha, A. R. et al. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biol. 16, e2005396 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carter, M. M. et al. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell 186, 3111–3124.e13 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y. et al. Gut microbiota insights into human adaption to high‐plateau diet. iMeta https://doi.org/10.1002/imt2.6 (2022).

  • Grześkowiak, Ł. et al. Distinct gut microbiota in Southeastern African and Northern European infants. J. Pediatr. Gastroenterol. Nutr. 54, 812–816 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hansen, M. E. B. et al. Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana. Genome Biol. 20, 16 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tett, A. et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe 26, 666–679.e7 (2019). This paper reveals that the gut microorganism P. copri includes a P. copri complex with four distinct clades, predominantly found in non-Western populations, wherein individuals commonly exhibit co-presence of all clades.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dhakan, D. B. et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. Gigascience 8, giz004 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dehingia, M. et al. Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci. Rep. 5, 18563 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keohane, D. M. et al. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat. Med. 26, 1089–1095 (2020). This paper shows that Irish Travellers retain similar human gut microbiomes to that of non-industrialized populations, indicating that microbiota composition is associated with non-dietary factors and may be linked to the risk of microbiome-related metabolic diseases.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vatanen, T. et al. Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism. Cell 185, 4921–4936.e15 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ennis, D., Shmorak, S., Jantscher-Krenn, E. & Yassour, M. Longitudinal quantification of Bifidobacterium longum subsp. infantis reveals late colonization in the infant gut independent of maternal milk HMO composition. Nat. Commun. 15, 894 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walsh, C., Lane, J. A., van Sinderen, D. & Hickey, R. M. Human milk oligosaccharides: shaping the infant gut microbiota and supporting health. J. Funct. Foods 72, 104074 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J. et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci. Rep. 10, 15792 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ho, N. T. et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 9, 4169 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van den Elsen, L. W. J., Garssen, J., Burcelin, R. & Verhasselt, V. Shaping the gut microbiota by breastfeeding: the gateway to allergy prevention? Front. Pediatr. 7, 47 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forbes, J. D. et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases — does a common dysbiosis exist? Microbiome 6, 221 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le Huërou-Luron, I., Blat, S. & Boudry, G. Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr. Res. Rev. 23, 23–36 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Taylor, R., Keane, D., Borrego, P. & Arcaro, K. Effect of maternal diet on maternal milk and breastfed infant gut microbiomes: a scoping review. Nutrients 15, 1420 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sindi, A. S. et al. Effect of a reduced fat and sugar maternal dietary intervention during lactation on the infant gut microbiome. Front. Microbiol. 13, 900702 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savage, J. H. et al. Diet during pregnancy and infancy and the infant intestinal microbiome. J. Pediatr. 203, 47–54.e4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sikder, Md. A. A. et al. Maternal diet modulates the infant microbiome and intestinal Flt3L necessary for dendritic cell development and immunity to respiratory infection. Immunity 56, 1098–1114.e10 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grant, E. T., Boudaud, M., Muller, A., Macpherson, A. J. & Desai, M. S. Maternal diet and gut microbiome composition modulate early‐life immune development. EMBO Mol. Med. 15, e17241 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Maternal consumption of a fermented diet protects offspring against intestinal inflammation by regulating the gut microbiota. Gut Microbes 14, 2057779 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moretti, C. H. et al. Germ‐free mice are not protected against diet‐induced obesity and metabolic dysfunction. Acta Physiol. 231, e13581 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rabot, S. et al. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci. Rep. 6, 32484 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleissner, C. K. et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104, 919–929 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32, 1720–1724 (2008).

    Article 
    CAS 

    Google Scholar 

  • Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018–e01116 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dalby, M. J. Questioning the foundations of the gut microbiota and obesity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220221 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Gurung, M. et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51, 102590 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan, P. M. et al. Metformin and dipeptidyl peptidase-4 inhibitor differentially modulate the intestinal microbiota and plasma metabolome of metabolically dysfunctional mice. Can. J. Diabetes 44, 146–155.e2 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021). This review explores the connection between the gut microbiota, its microbial compounds and their roles in healthy metabolism and in metabolic diseases.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pascale, A. et al. Microbiota and metabolic diseases. Endocrine 61, 357–371 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chey, W. D., Kurlander, J. & Eswaran, S. Irritable bowel syndrome. JAMA 313, 949 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vervier, K. et al. Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut 71, 1821–1830 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bootz-Maoz, H. et al. Diet-induced modifications to human microbiome reshape colonic homeostasis in irritable bowel syndrome. Cell Rep. 41, 111657 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duan, R., Zhu, S., Wang, B. & Duan, L. Alterations of gut microbiota in patients with irritable bowel syndrome based on 16S rRNA-targeted sequencing: a systematic review. Clin. Transl. Gastroenterol. 10, e00012 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serrano-Moreno, C. et al. Diets for inflammatory bowel disease: what do we know so far? Eur. J. Clin. Nutr. 76, 1222–1233 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dong, C. et al. Meat intake is associated with a higher risk of ulcerative colitis in a large European prospective cohort study. J.Crohns Colitis 16, 1187–1196 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A. & Parthasarathy, S. Negative effects of a high-fat diet on intestinal permeability: a review. Adv. Nutr. 11, 77–91 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Schmitt, M. & Greten, F. R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 21, 653–667 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, Z., Chen, J., Yao, H. & Hu, H. Fusobacterium and colorectal cancer. Front. Oncol. https://doi.org/10.3389/fonc.2018.00371 (2018).

  • Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Estruch, R. et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delgado-Lista, J. et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet 399, 1876–1885 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sobiecki, J. G. et al. A nutritional biomarker score of the Mediterranean diet and incident type 2 diabetes: integrated analysis of data from the MedLey randomised controlled trial and the EPIC-InterAct case-cohort study. PLoS Med. 20, e1004221 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haskey, N. et al. A Mediterranean diet pattern improves intestinal inflammation concomitant with reshaping of the bacteriome in ulcerative colitis: a randomised controlled trial. J. Crohns Colitis 17, 1569–1578 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Staudacher, H. M. et al. Clinical trial: a Mediterranean diet is feasible and improves gastrointestinal and psychological symptoms in irritable bowel syndrome. Aliment. Pharmacol. Ther. 59, 492–503 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barnes, L. L. et al. Trial of the mind diet for prevention of cognitive decline in older persons. N. Engl. J. Med. 389, 602–611 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suskind, D. L. et al. The specific carbohydrate diet and diet modification as induction therapy for pediatric Crohn’s disease: a randomized diet controlled trial. Nutrients 12, 3749 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, J. D. et al. A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn’s disease. Gastroenterology 161, 837–852.e9 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, B. et al. Faecal and urine metabolites, but not gut microbiota, may predict response to low FODMAP diet in irritable bowel syndrome. Aliment. Pharmacol. Ther. 58, 404–416 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cox, S. R. et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158, 176–188.e7 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poslt Königová, M., Sebalo Vňuková, M., Řehořková, P., Anders, M. & Ptáček, R. The effectiveness of gluten-free dietary interventions: a systematic review. Front. Psychol. 14, 1107022 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonder, M. J. et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 8, 45 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francavilla, A. et al. Gluten-free diet affects fecal small non-coding RNA profiles and microbiome composition in celiac disease supporting a host-gut microbiota crosstalk. Gut Microbes 15, 2172955 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hahn, D., Hodson, E. M. & Fouque, D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst. Rev. 10, CD001892 (2020).

    PubMed 

    Google Scholar 

  • Hsu, C.-K. et al. Effects of low protein diet on modulating gut microbiota in patients with chronic kidney disease: a systematic review and meta-analysis of international studies. Int. J. Med. Sci. 18, 3839–3850 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcia-Mazcorro, J. F., Mills, D. A., Murphy, K. & Noratto, G. Effect of barley supplementation on the fecal microbiota, caecal biochemistry, and key biomarkers of obesity and inflammation in obese db/db mice. Eur. J. Nutr. 57, 2513–2528 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Connolly, M. L., Tuohy, K. M. & Lovegrove, J. A. Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br. J. Nutr. 108, 2198–2206 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nat. Commun. 13, 3175 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  • Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 20, e3001536 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Browne, H. P. et al. Boosting microbiome science worldwide could save millions of children’s lives. Nature 625, 237–240 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schei, K. et al. Early gut mycobiota and mother-offspring transfer. Microbiome 5, 107 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F., Aschenbrenner, D., Yoo, J. Y. & Zuo, T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 3, e969–e983 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schulfer, A. et al. Fecal viral community responses to high-fat diet in mice. mSphere 5, e00833–e00919 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pargin, E. et al. The human gut virome: composition, colonization, interactions, and impacts on human health. Front. Microbiol. 14, 963173 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pärnänen, K. et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 9, 3891 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pärnänen, K. M. et al. Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. Am. J. Clin. Nutr. 115, 407–421 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Stege, P. B. et al. Impact of long-term dietary habits on the human gut resistome in the Dutch population. Sci. Rep. 12, 1892 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliver, A. et al. Association of diet and antimicrobial resistance in healthy U.S. adults. mBio 13, e0010122 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jacka, F. N. et al. Correction to: a randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 16, 236 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parletta, N. et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: a randomized controlled trial (HELFIMED). Nutr. Neurosci. 22, 474–487 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horn, J., Mayer, D. E., Chen, S. & Mayer, E. A. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl. Psychiatry 12, 164 (2022). This review compiles evidence from preclinical and clinical studies investigating the impact of dietary interventions on various psychiatric and neurological disorders, to highlight the role of diet-induced microbial alterations and potential benefits for brain health.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Govindpani, K. et al. Vascular dysfunction in Alzheimer’s disease: a prelude to the pathological process or a consequence of it? J. Clin. Med. 8, 651 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kinney, J. W. et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 4, 575–590 (2018).

    Google Scholar 

  • Berding, K. et al. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol. Psychiatry 28, 601–610 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adams, J. et al. Comprehensive nutritional and dietary intervention for autism spectrum disorder — a randomized, controlled 12-month trial. Nutrients 10, 369 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghalichi, F., Ghaemmaghami, J., Malek, A. & Ostadrahimi, A. Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J. Pediatr. 12, 436–442 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ross, F. C. et al. Existing and future strategies to manipulate the gut microbiota with diet as a potential adjuvant treatment for psychiatric disorders. Biol. Psychiatry 95, 348–360 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Source: nature.com

    Kerri Waldron

    My name is Kerri Waldron and I am an avid healthy lifestyle participant who lives by proper nutrition and keeping active. One of the things I love best is to get to where I am going by walking every chance I get. If you want to feel great with renewed energy, you have to practice good nutrition and stay active.

    Add comment

    twenty − seven =

    smoothie-diet